
11/22/2021

1

1

Data Structure

Lecture 4:
Linear Data Structure: The Queue

ASST. INSTRUCTOR

ALI A. AL-ANI

Department of Computer Science

College of Science

2

Department of Computer Science

College of Science

LDS: The Queue

• Queue is a linear list of elements , somewhat similar to Stacks. Unlike stacks, a queue is open at both its

ends. One end is always used to insert data (Enqueue) and the other is used to remove data (Dequeue).

Queue follows First-In-First-Out methodology, i.e., the data item stored first will be accessed first.

• A real-world example of queue can be a single-lane one-way road, where the vehicle enters first, exits

first. More real-world examples can be seen as queues at the ticket windows and bus-stops.

11/22/2021

2

3

Department of Computer Science

College of Science

LDS: The Queue

• A queue is a linear list of elements in which deletions can place only at one end, called the front, and

insertions can take place only at the other end, called the rear. The terms "front" and "rear" are used in

describing a linear list only when it is implemented as a queue. The figure illustrates a queue containing

Data elements.

Data Data Data Data Data Data Data Data Data

O
u

t

RearFront

In Data

4

Department of Computer Science

College of Science

LDS: Queue Representation

• Since a queue is a linear data structure, any linear data structure implementation will do. As in stacks,

a queue can also be implemented using Arrays, Linked-lists.

1. Non-linked- structures (Array): The simplest method to represent a queue is to use one-dimensional

array. The queue may therefore be declared and containing three objects: an array with suitable size

and with suitable data type (Int, Float,..etc) to hold the elements of the queue, and two integers to

indicate the position of the front and the rear within the array. Ex: The below declaration example in

the C++ language

const SIZE= 10; Int queue[SIZE]; Int rear = -1, front = -1; // -1 mean the queue is empty.

11/22/2021

3

5

Department of Computer Science

College of Science

LDS: Queue Operations

• Queue operations may involve initializing or defining the queue, utilizing it, and then completely erasing

it from the memory. The basic operations associated with queues are:

1. Enqueue() 1 add (store) an item to the queue.

2. Dequeue() 1 remove (access) an item from the queue.

• Few more functions are required to make the above-mentioned queue operation efficient. These are:

1. isfull() 1 Checks if the queue is full.

2. isempty() 1 Checks if the queue is empty.

• In queue, we always dequeue (or access) data, pointed by front pointer and while enqueing (or storing)

data in the queue we take help of rear pointer.

6

Department of Computer Science

College of Science

LDS: Queue (Enqueue)

• Steps for inserting an Element in a Queue (Enqueue):

1. Initialize both the front and rear as -1, which means that the queue is empty.

2. When the first element will be inserted then the rear and front both will be incremented by 0. But for

the second element onwards only the rear will be incremented.

3. The value of rear can be maximum up to Size-1, where Size is the maximum number of elements a

queue can hold.

4. If the rear reaches Size-1, then display a message that 7The queue is full or Queue Overflow9.

11/22/2021

4

7

Department of Computer Science

College of Science

LDS: Queue (Enqueue)
• Sub program to add new element to the queue

void Enqueue(int item)

{

if (fullqueue())

{ cout<<"error...the queue is full"<<endl;

cout<<"press any key to exit"<<endl;

getch(); exit(0); }

Else {

rear=rear+1;

queue[rear]=item; } }

D

A B C

Rear =2Front =0

A B C

Rear =3Front =0

D

8

Department of Computer Science

College of Science

LDS: Queue (Dequeue)

• Steps for deleting an Element from the Queue (Dequeue):

• In a queue, delete operation takes place at front end. The 4Dequeue5 operation removes the item at the

4front5 of the queue and returns it.

1. Check if the queue is empty (Front and Rear = -1). If the queue is empty, produce underflow error

and exit.

2. When an element will be deleted from the queue the value of front will be Incremented by 1.

3. The value of front can be Maximize up to Size-1.

4. If the front reaches -1, then display a message that 4The queue is empty or Queue Underflow5.

11/22/2021

5

9

Department of Computer Science

College of Science

LDS: Queue (Dequeue)
• Sub program to delete an element from the queue

void Dequeue()

{

if(emptyqueue())

{ cout<<"errorCthe queue is empty"<<endl;

cout<<"press any key to exit"<<endl;

getch(); exit(0); }

Else {

item=queue[front];

front=front+1; } }

A B C

Rear =3Front =0

D

B C

Rear =3Front =1

D

A

10

Department of Computer Science

College of Science

LDS: The Queue

• Linear Queue Problem: Arrays have fixed sizes. Therefore, after various insertion and deletion

operations Queue (Rear) will point to the last array position as state in the following figure giving the

impression that the queue is full but it is not (size of array =10).

• In the above situation queue overflow will occur though the free spaces are also available since the rear

reaches the end. So, queue is full, but still there are two free cells are available in queue.

Data Data Data Data Data Data

Rear =9Front =4

11/22/2021

6

11

Department of Computer Science

College of Science

LDS: Circular Queue

• To avoid this problem, the queue can be arranged in a circular way called circular queue. In a circular

queue as soon as the rear reaches the Max value (Rear equal to Size-1), it should be reset to 0. So, if we

have to insert new data Item in the above queue we can insert it into the first place.

• In the circular queue the Front and Rear arrows wrap around to the beginning of the array, the

elements are arranged in a sequential manner but can logically be regarded as circularly arranged. The

use of such a type of queue is to reuse memory locations.

Data Data Data Data Data Data

Rear =9Front =4

Data

Rear =0

12

Department of Computer Science

College of Science

LDS: Queue Representation

2. Linked- structures (Linked List): As we know if we implement the queue in array, sometimes number of

memory location remains unused also the size of the array is fixed. To overcome these drawbacks, it is

better to implement queue using linked list representation.

• A linked queue, performs insertions on one side and removals from the other. Therefore it is necessary

to maintain a links to both the front and the back of the list. The figure shows the Linked List

Implementation of queue. The front and rear are pointers to the front and rear queue elements,

respectively.

11/22/2021

7

13

Department of Computer Science

College of Science

LDS: Queue Representation

• The below declaration example in the C++ language represent the linked queue by using a structure

that contains a value and a link to its neighbor.

struct node{

int data;

struct node*link;

}*rear,*front,*p,*q;

14

Department of Computer Science

College of Science

LDS: Queue (Enqueue)
• Sub program to add new element to the linked queue

void Enqueue ()

{ p = new node;

cout<<"input new element"<<endl;

cin>>p->data;

p->link=NULL; // 1

if(rear==NULL)

front=p;

else rear->link=p; // 2

rear=p; // 3

}

11/22/2021

8

15

Department of Computer Science

College of Science

LDS: Queue (Dequeue)
• Sub program to delete an element from the linked queue

void Dequeue ()

{ int item;

p = front; // 1

if(p == NULL) { cout<<"error...the linked queue is empty"<<endl;

cout<<"press any key to exit"<<endl; getch(); exit(0); }

else { q=p->link; // 2

item = p->data;

delete (p);

front = q; // 3

if (front == NULL)

rear = NULL; } }

16

Department of Computer Science

College of Science

LDS: Queue Applications

• There are various queues quietly doing their job in your computer's (or the network's) operating

system such as:

I. The printer queue where print jobs wait for the printer to be available Job scheduling (FIFO

Scheduling)

II. Key board buffer, A queue also stores keystroke data as you type at the keyboard. This way, if you're

using a word processor but the computer is briefly doing something else when you hit a key, the

keystroke won't be lost; it waits in the queue until the word processor has to read it.

11/22/2021

9

17

Department of Computer Science

College of Science

The End

